
Convective Magnetic Flux Emergence
Simulations from the Deep Solar Interior to the
Photosphere: Comprehensive Study of Flux

Tube Twist

Shin Toriumi et al., ApJ (2024)

Donghui Son

Kyung Hee University

April 4, 2025

Solar Physics Journal Club @ KHU

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025 1 / 39



Purpose of this study

Investigate how varying initial twist in deeply
rooted magnetic flux tubes influences their
emergence, helicity injection, and sunspot

formation.
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Background

I Sunspots and Active Regions (ARs) arise when toroidal
magnetic flux tubes formed in the convection zone rise to the
photosphere.

I As a magnetic flux emerges, it suppliesmagnetic helicity to
the corona, thereby accumulating free magnetic energy and
ultimately triggering explosive events such as flares.

I The twist of emerging magnetic flux is highlighted as a key
factor governing generation, transport, and release of a
magnetic field.

This study focuses on the role of magnetic twist in
the process.
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Importance of magnetic twist in emerging flux

Without sufficient twist, a flux tube can be shredded by
surrounding convective flows and fail to reach the photosphere.

A certain level of twist has been considered essential formagnetic integrity.

Key findings from previous MHD simulations
I Twisted flux tubes emerge with distinct positive/negative polarity pattern

(i.e., yin-yang pattern called “magnetic tongues”)
→ tilt angle of the two spots
→ sunspot rotation
→ injecting free energy and magnetic helicity into the corona

I Higher initial twist:
→ faster rise through the CZ
→ more pronounced sunspot rotation
→ stronger free energy injection
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Examples of yin-yang pattern

(a) (b)

(c)
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Flare-active ARs and complex magnetic fields

I Observations show highly flare-productive ARs often have:
→ Complex magnetic configurations

→ δ-type sunspots (opposite polarities in one penumbra)

I Kink Instability Hypothesis:
→ Occurs when twist exceeds critical threshold

→ Causes flux tube to writhe and deform

→ Can produce complex δ-spot structures

Figure 2: Helical kink instability. Conversion of twist and writhe.
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Previous studies

Key previous findings

I Tanaka (1991): δ-spots from twisted ropes
I Linton et al. (1996, 1999): Theoretical kink criterion
I Fan (1998, 1999): Kink produces writhing tubes
I Takasao et al. (2015): Kink drives polarities rotation
I Toriumi & Takasao (2018): Kink supplies the greatest free energy.
I Knizhnik et al. (2018): Tested extreme twist values (up to 4qcr)

Limitation in previous studies
Most prior models did not account for realistic convective turbulence
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Key question and current approach

Is kink instability genuinely feasible under
realistic solar conditions?

What sets this study apart
I Incorporates realistic solar thermal convection

I Tests twist values from zero to twice kink threshold
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Numerical model: R2D2

Radiation and Reduced Speed of Sound Technique for Deep
Dynamics
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s = s0 + s1.
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Numerical model: R2D2

I Self-consistently simulates convective motions and radiative
transfer throughout the solar convection zone.

I Adopts theModel S solar structure (for density, pressure,
temperature stratification) as an initial static background,
along with a realistic equation of state including partial
ionization.

I Radiative transfer is solved using a gray approximation and
Rosseland mean opacity in both upward and downward
directions, enabling accurate modeling of photospheric
cooling and internal heating, thus driving convection.
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Numerical model: R2D2

Domain specifications
I 3D Cartesian grid:

→ (Lx ,Ly,Lz) = (98.3Mm, 98.3Mm, 201.7Mm)
→ (Nx ,Ny,Nz) = (1024, 1024, 384): non-uniform grids for∆z

I Boundary conditions:
→ Periodic boundaries horizontally
→ Potential field (open) boundary at top (z = 700 km above the τ = 1 surface)
→ Stress-free at bottom boundary (z = 201Mm below the τ = 1 surface):

� Upward convective (thermal) flux is supplied, mimicking the Sun’s radiative energy
input from below.

� Open for downward flow
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Reduced speed-of-sound technique

I In the CZ, sound speed (cs) is extremely high, making a direct simulation
with full compressibility prohibitively time-consuming.

I Artificially reduces cs → Relaxes the CFL condition→ Reduces∆t
constraint

The RSST factor ξ

ξ(z) = max

(
1, ξ0

[
ρ0(z)
ρb

]1/3
,

cs(z)
cb

)
, cs(z) =

√
(∂p/∂ρ)s

I ξ0 = 160 is a constant factor
I ρb = 0.2 g cm−3 is the density around the bottom of the CZ
I cb = 2.2× 107 cm s−1 is the sound speed around the bottom of the CZ
I cs(z) is the local adiabatic sound speed.
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Simulation methodology

1 Initial hydrodynamic phase:
→ Starts with magnetically free convection simulation
→ Imposes heat flux at lower boundary
→ Top boundary radiates energy away

2 Development of natural convection:
→ System evolves to statistically steady state
→ Forms large-scale downflow plumes and upflow cells
→ Creates realistic solar convective environment

3 Magnetic flux introduction:
→ Horizontal flux tube inserted into established convective flow
→ Various twist parameters tested (from zero to twice kink threshold)
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Initial magnetic flux tube

Horizontal magnetic flux tube into the domain at about 20-30Mm below the
surface

Bx(r) = Btb exp
(
− r2

R2
tb

)
, Bφ(r) = qrBtb(r)

I Btb: axial field strength
I r : radial distance from the center of the tube
I φ: azimuthal angle
I Rtb: tube radius
I q: twist strength

→ Gaussian flux tube
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Initial magnetic flux tube

Figure 3: The total magnetic field strength for the q/qcr = 0 case at t = 0 hr.
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Initial magnetic flux tube

No initial buoyancy

δpexc =
B2

x (r)
8π

[
q2

(
R2

tb
2

)
− 1

]
(< 0)

The tube is placed in pressure balance with its surroundings,
adjusting entropy so that the tube is neither more nor less dense
than exterior fluid.

→ Advected by external flows
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Simulation cases

I Nine total simulation cases
→ q/qcr = [−2,−1,−1/2,−1/4, 0,+1/4,+1/2,+1,+2]with qcr = 1/Rtb
→ Positive/negative values represent right-/left-handed twists.
→ |q/qcr | ≥ 1 indicates kink-unstable.

I Adjust the axial field strength (Btb) to maintain the same total Emag
I All cases have the same initial Emag = 5.85× 1034 erg

Case Btb Rtb q/qcr q Φx
(kG) (Mm) (Mm−1) (Mx)

1 7.1 8.0 −2 −0.25 1.40× 1022

2 10.0 8.0 −1 −0.125 1.97× 1022

3 11.5 8.0 −1/2 −0.0625 2.28× 1022

4 12.1 8.0 −1/4 −0.03125 2.38× 1022

5 12.2 8.0 0 0 2.42× 1022

6 12.1 8.0 1/4 0.03125 2.38× 1022

7 11.5 8.0 1/2 0.0625 2.28× 1022

8 10.0 8.0 1 0.125 1.97× 1022

9 7.1 8.0 2 0.25 1.40× 1022
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Analysis methodology

I Measurement height: z = 200 km (due to strong downflow at τ = 1)

I Temporal averaging: 6-hr moving average applied to all time series data
→ Filters out short-term convective fluctuations (10 min to few hrs)
→ Preserves emergence dynamics (typical duration: 30-40 hr)

I Total unsigned magnetic flux Φ =
∫

S |Bz | dS

I Sunspot area Aspot:
→ Regions whose emergent intensity is less than 90% of the quiet-Sun average

I Twist parameters (used only for |Bz | ≥ 100 G):
→ α0

av = 〈Jz/Bz〉
→ α1

av = 〈Jzsgn(Bz)〉 / 〈|Bz |〉
→ α2

av = 〈BzJz〉 /
〈
B2

z
〉
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Analysis methodology

I Magnetic helicity flux: Fz = 2
∫

S [(Ap · Bh)Vz − (Ap · Vh)Bz ] dS

I Total injected helicity: HR =
∫ t
0
Fz dt′

→ a close relation with the occurrence of flares

I Poynting flux: Sz =
1

4π

∫
S

[
B2

hVz − (Bh · Vh)Bz
]

dS

I Total injectied magnetic energy: Emag =
∫ t
0
Sz dt′

→ injection of magnetic energy into the atmosphere
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Results: Overall evolution
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Results: Overall evolution

Temporal overview
I Early stage: small fragments of the rising flux tube appear at the surface.
I t ∼ 20 hr: the main portion emerges via large upflows.
I Emergence forms a yin-yang pattern of postive/negative polarities.
I With periodic boundaries, opposite polarities eventually collide (t ∼ 30 hr),

forming δ-spots (t ∼ 50 hr).

Key features: an initial tilt of the untwisted case
a yin-yang pattern alone does not prove the tube was twisted
→ strong turbulence can yield similar appearances even if q = 0.
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Results: Overall evolution

Effect of twist strength q/qcr

I Even an untwisted tube can rise via convection.

I Weakly twisted fields diffuse quickly in the surface.
→ the twist binds magnetic flux against turbulent shredding.

I Extremely large twist (q/qcr = ±2) also shows a diffuse distribution.
→ Initially Btb is weaker.
→ Total Φx is smaller.
→ Relatively easily influenced by the surrounding turbulence.

I The sign of helicity injection depends on the twist direction.
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Results

Figure 4: |B| at t = 24 hr for the q/qcr = 0 case.
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Results: (unsigned) Magnetic flux and sunspot area

Figure 5: Temporal evolutions of the total magnetic flux, Φ, and the flux growth rate,
dΦ/dt, in the PH.
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Results: (unsigned) Magnetic flux and sunspot area

Effect of twist strength q/qcr
I Extremely high twist (q/qcr = ±2) yields a lower flux peak.

→ Beq = 6.5 kG at ztb = −22Mm
→ Btb = 7.1 kG, comparable to Beq
→ Easily collapsed by the external turbulent flows.
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Results: (unsigned) Magnetic flux and sunspot area

The tendency that an emerging AR with a weaker twist is more
scattered, and thus has a smaller amount of magnetic flux within

the spots.

Figure 6: Maximum photospheric magnetic flux and the corresponding sunspot area. The
straight line is the linear fit to the eight data points except for the untwisted flux tube.
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Results: (unsigned) Magnetic flux and sunspot area

I Numerical models tend to exhibit higher flux growth rates than observed
values.

I X. Sun & A. A. Norton (2017) reported dΦ/dt = 4.93× 1020 ∼ 1021 Mx hr−1

for Φ = 6.08× 1022 Mx in NOAA AR 12673.

Figure 7: Flux growth rate, dΦ/dt, vs. total magnetic flux, Φ, for various observations and
the present nine simulation cases.
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Results: magnetic twist αav

Examine how much of the twist in the initial flux tube
is successfully transported to the photosphere by

flux emergence

α0
av = 〈Jz/Bz〉 ,

α1
av = 〈Jzsgn(Bz)〉 / 〈|Bz |〉 ,

α2
av = 〈BzJz〉 /

〈
B2

z
〉
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Results: magnetic twist αav
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Results: magnetic twist αav

I max(αav) tends to decrease from α0
av to α

2
av

I Considering that α2
av puts the largest weight to the strong-field regions, this

tendency may indicate that the weak field regions have a relatively large
amount of magnetic twist.

I Smaller |q| → conserves the original twist better

I Higher |q| → αav becomes saturated
→ less successful emergence of strong-twist cases
→ the background turbulence stripped away the twist
→ upper BC→mitigates the magnetic twist that was transported from the

subsurface domain.
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Results: magnetic helicity

Figure 8: Temporal evolutions of the helicity flux rate, Fz , and the total injected magnetic
helicity,∆HR. The helicity∆HR for the cases q/qcr = [1/4, 0,−1/4,−1/2] are also
shown in the inset. (Bottom panels)
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Results: magnetic helicity

I Peak values decrease as twist strength decreases.

I Even the no-twist case injects finite (positive) helicity.

I In the q/qcr = −1/4 case, helicity briefly swings positive before
steadily going negative.
→ competition between the positive helicity added by the background

convection and the counteracting negative magnetic helicity of the
original flux tube.
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Results: Normalized magnetic helicity

I In comparing with observations, a normalized helicity measure (∆HR/Φ
2)

is used.

I Observations show that the typical value of the normalized helicity,
∆HR/Φ

2, is of the order of 0.01.
→ super-flaring ARs→∆HR/Φ

2 ≤ 0.04

I For |q/qcr | = 1/2, values already excced the observed level (> 0.1)

I Twist above the kink threshold (|q/qcr | > 1) leads to unrealistically large
helicity.
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Results: Magnetic energy

Figure 9: Temporal evolutions of the Poynting flux in the photosphere, Sz , and the injected
magnetic energy, Emag . Their peak values as a function of the initial flux tube twist, q/qcr .
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Results: Magnetic energy

I Cases with q/qcr = 1 and 1/2 achieve the highest peaks.

I The q/qcr = −1 case shows a large peak value of max(Emag)

→ continued injection of the Sz , although max(Sz) is low.

I Emag tends to increase with the increase of |q/qcr |
→ max(Sz) is larger
→ emergence continues

I For |q/qcr | = ±2, Emag is not remarkable because the flux emergence fails.
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Discussion & conclusion: key findings

I Magnetic flux emergence:
→ Flux tubes reach the photosphere via convective upflows, regardless of

twist.
→ If twist is too weak, flux disperses rapidly in the photosphere.

I Magnetic twist:
→ Photospheric measurements largely preserve the initial twist.
→ Within realistic observational ranges.

I Magnetic helicity:
→ Even untwisted tubes gain helicity from background turbulence.
→ Twist above the kink threshold produces unrealistic helicity levels.
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Discussion & conclusion: theoretical implications

I δ-Spot Formation Mechanism:
→ Kink instability may not be the primary mechanism for δ-spot formation.
→ Other scenarios: multiple flux tube interactions,

multi-buoyancy-segment tubes, etc.

I Role of convection:
→ Convection is a non-negligible source of helicity.
→ Confirms the importance of twist in preserving flux tube integrity.

I Magnetic energy transport:
→ Less than 10% of initial tube energy reaches the upper atmosphere.
→ Most of the magnetic energy remains in the convection zone.
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Discussion & conclusion: limitations and future work

I Study Limitations:
→ Difficult to confirm kink instability fully.
→ Need to account for different initial tube positions.

I Future Directions:
→ Expand the parameter space.
→ Investigate alternative -spot formation mechanisms.

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025 38 / 39



Questions & references

Thank you for listening!

Questions?
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