Convective Magnetic Flux Emergence Simulations from the Deep Solar Interior to the Photosphere: Comprehensive Study of Flux Tube Twist

Shin Toriumi et al., ApJ (2024)

Donghui Son

Kyung Hee University

April 4, 2025

Solar Physics Journal Club @ KHU

Purpose of this study

Investigate how varying initial twist in deeply rooted magnetic flux tubes influences their emergence, helicity injection, and sunspot formation.

Background

- Sunspots and Active Regions (ARs) arise when toroidal magnetic flux tubes formed in the convection zone rise to the photosphere.
- ▶ As a magnetic flux emerges, it supplies magnetic helicity to the corona, thereby accumulating free magnetic energy and ultimately triggering explosive events such as flares.
- ► The twist of emerging magnetic flux is highlighted as a key factor governing generation, transport, and release of a magnetic field.

This study focuses on the role of magnetic twist in the process.

Importance of magnetic twist in emerging flux

Without sufficient twist, a flux tube can be shredded by surrounding convective flows and fail to reach the photosphere.

A certain level of twist has been considered essential for magnetic integrity.

Key findings from previous MHD simulations

- ➤ Twisted flux tubes emerge with distinct positive/negative polarity pattern (i.e., yin-yang pattern called "magnetic tongues")
 - → tilt angle of the two spots
 - → sunspot rotation
 - → injecting free energy and magnetic helicity into the corona
- ► Higher initial twist:
 - → faster rise through the CZ
 - → more pronounced sunspot rotation
 - \rightarrow stronger free energy injection

Examples of yin-yang pattern

(c)

Flare-active ARs and complex magnetic fields

- ▶ Observations show highly flare-productive ARs often have:
 - → Complex magnetic configurations
 - \rightarrow δ -type sunspots (opposite polarities in one penumbra)
- Kink Instability Hypothesis:
 - → Occurs when twist exceeds critical threshold
 - → Causes flux tube to writhe and deform
 - ightarrow Can produce complex δ -spot structures

Figure 2: Helical kink instability. Conversion of twist and writhe.

Previous studies

Key previous findings

- **Tanaka** (1991): δ-spots from twisted ropes
- ▶ Linton et al. (1996, 1999): Theoretical kink criterion
- ► Fan (1998, 1999): Kink produces writhing tubes
- ► Takasao et al. (2015): Kink drives polarities rotation
- ▶ Toriumi & Takasao (2018): Kink supplies the greatest free energy.
- \blacktriangleright Knizhnik et al. (2018): Tested extreme twist values (up to $4q_{cr}$)

Limitation in previous studies

Most prior models did not account for realistic convective turbulence

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025 7/39

Is kink instability genuinely feasible under realistic solar conditions?

What sets this study apart

- ▶ Incorporates realistic solar thermal convection
- ► Tests twist values from zero to twice kink threshold

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025 8/39

Numerical model: R2D2

Radiation and Reduced Speed of Sound Technique for Deep Dynamics

$$\frac{\partial \rho_1}{\partial t} = -\frac{1}{\xi^2} \, \nabla \cdot \left(\rho \, \mathbf{V} \right),$$

$$\frac{\partial \rho_1}{\partial t} = - \, \nabla \cdot \left(\rho \, \mathbf{V} \, \mathbf{V} \right) \; - \; \nabla p_1 \; + \; \rho_1 \, \mathbf{g} \; + \; \frac{1}{4\pi} \Big((\nabla \times \mathbf{B}) \times \mathbf{B} \Big), \label{eq:delta_potential}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}),$$

$$\rho T \frac{\partial s_1}{\partial t} = \rho T (\mathbf{V} \cdot \nabla) s + Q,$$

$$\rho T \frac{\partial}{\partial t} = \rho T(\mathbf{V} \cdot \mathbf{V}) s + Q,$$

$$p_1 = p_1(\rho, s).$$

$$\rho = \rho_0 + \rho_1,$$

$$p = p_0 + p_1,$$

$$s = s_0 + s_1$$
.

Numerical model: R2D2

- ➤ Self-consistently simulates **convective motions** and **radiative transfer** throughout the solar convection zone.
- ► Adopts the Model S solar structure (for density, pressure, temperature stratification) as an initial static background, along with a realistic equation of state including partial ionization.
- ▶ Radiative transfer is solved using a gray approximation and Rosseland mean opacity in both upward and downward directions, enabling accurate modeling of photospheric cooling and internal heating, thus driving convection.

Domain specifications

- ▶ 3D Cartesian grid:
 - $\rightarrow (L_x, L_y, L_z) = (98.3 \,\text{Mm}, 98.3 \,\text{Mm}, 201.7 \,\text{Mm})$
 - $\rightarrow (N_x, N_y, N_z) = (1024, 1024, 384)$: non-uniform grids for Δz
- ► Boundary conditions:
 - → Periodic boundaries horizontally
 - \rightarrow Potential field (open) boundary at top (z=700 km above the $\tau=1$ surface)
 - \rightarrow Stress-free at bottom boundary (z=201 Mm below the $\tau=1$ surface):
 - Upward convective (thermal) flux is supplied, mimicking the Sun's radiative energy input from below.

11/39

Open for downward flow

Reduced speed-of-sound technique

- ightharpoonup In the CZ, sound speed (c_s) is extremely high, making a direct simulation with full compressibility prohibitively time-consuming.
- lackbox Artificially reduces $c_s o$ Relaxes the CFL condition o Reduces Δt constraint

The RSST factor ξ

$$\xi(z) = \max\left(1, \xi_0 \left[\frac{\rho_0(z)}{\rho_{\rm b}}\right]^{1/3}, \frac{c_{\rm s}(z)}{c_{\rm b}}\right), \quad c_{\rm s}(z) = \sqrt{\left(\partial p/\partial \rho\right)_{\rm s}}$$

- \triangleright $\xi_0 = 160$ is a constant factor
- $ho_b=0.2\,{
 m g\,cm^{-3}}$ is the density around the bottom of the CZ
- ho $c_b = 2.2 imes 10^7 \, \mathrm{cm} \, \mathrm{s}^{-1}$ is the sound speed around the bottom of the CZ
- $ightharpoonup c_s(z)$ is the local adiabatic sound speed.

Simulation methodology

Initial hydrodynamic phase:

- → Starts with magnetically free convection simulation
- → Imposes heat flux at lower boundary
- → Top boundary radiates energy away

Development of natural convection:

- → System evolves to statistically steady state
- → Forms large-scale downflow plumes and upflow cells
- → Creates realistic solar convective environment

Magnetic flux introduction:

- → Horizontal flux tube inserted into established convective flow
- → Various twist parameters tested (from zero to twice kink threshold)

Initial magnetic flux tube

Horizontal magnetic flux tube into the domain at about $20\text{--}30~\mathrm{Mm}$ below the surface

$$B_x(r) = B_{\rm tb} \exp\left(-\frac{r^2}{R_{\rm tb}^2}\right), \quad B_\phi(r) = qr B_{\rm tb}(r)$$

- $ightharpoonup B_{\mathrm{tb}}$: axial field strength
- r: radial distance from the center of the tube
- $\triangleright \phi$: azimuthal angle
- $ightharpoonup R_{
 m tb}$: tube radius
- → q: twist strength

→ Gaussian flux tube

Initial magnetic flux tube

Figure 3: The total magnetic field strength for the $q/q_{cr}=0$ case at t=0 hr.

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025

No initial buoyancy

$$\delta p_{\text{exc}} = \frac{B_x^2(r)}{8\pi} \left[q^2 \left(\frac{R_{\text{tb}}^2}{2} \right) - 1 \right] (<0)$$

The tube is placed in pressure balance with its surroundings, adjusting entropy so that the tube is neither more nor less dense than exterior fluid.

ightarrow Advected by external flows

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025

Simulation cases

- Nine total simulation cases
 - $\rightarrow q/q_{cr} = [-2, -1, -1/2, -1/4, 0, +1/4, +1/2, +1, +2]$ with $q_{cr} = 1/R_{tb}$
 - → Positive/negative values represent right-/left-handed twists.
 - $\rightarrow |q/q_{cr}| \ge 1$ indicates kink-unstable.
- lacktriangle Adjust the axial field strength $(B_{
 m tb})$ to maintain the same total E_{mag}
- lacktriangle All cases have the same initial $E_{mag}=5.85 imes 10^{34} \ {
 m erg}$

Case	B_{tb}	R_{tb}	$q/q_{ m cr}$	q	Φ_x
	(kG)	(Mm)		(Mm^{-1})	(Mx)
1	7.1	8.0	-2	-0.25	1.40×10^{22}
2	10.0	8.0	-1	-0.125	1.97×10^{22}
3	11.5	8.0	-1/2	-0.0625	2.28×10^{22}
4	12.1	8.0	-1/4	-0.03125	2.38×10^{22}
5	12.2	8.0	0	0	2.42×10^{22}
6	12.1	8.0	1/4	0.03125	2.38×10^{22}
7	11.5	8.0	1/2	0.0625	2.28×10^{22}
8	10.0	8.0	1	0.125	1.97×10^{22}
9	7.1	8.0	2	0.25	1.40×10^{22}

Analysis methodology

- ▶ Measurement height: z=200 km (due to strong downflow at $\tau=1$)
- ▶ **Temporal averaging**: 6-hr moving average applied to all time series data
 - → Filters out short-term convective fluctuations (10 min to few hrs)
 - → Preserves emergence dynamics (typical duration: 30-40 hr)
- lacksquare Total unsigned magnetic flux $\Phi=\int_S |B_z| \; dS$
- ▶ Sunspot area A_{spot} :
 - $\rightarrow\,$ Regions whose emergent intensity is less than 90% of the quiet-Sun average
- ▶ **Twist parameters** (used only for $|B_z| \ge 100$ G):
 - $\rightarrow \alpha_{av}^0 = \langle J_z/B_z \rangle$
 - $\rightarrow \alpha_{av}^1 = \langle J_z sgn(B_z) \rangle / \langle |B_z| \rangle$
 - $\rightarrow \alpha_{av}^2 = \langle B_z J_z \rangle / \langle B_z^2 \rangle$

Analysis methodology

- ▶ Magnetic helicity flux: $F_z = 2 \int_S \left[(\mathbf{A}_p \cdot \mathbf{B}_h) \ V_z (\mathbf{A}_p \cdot \mathbf{V}_h) \ B_z \right] dS$
- ▶ Total injected helicity: $H_{\rm R} = \int_0^t F_z dt'$
 - → a close relation with the occurrence of flares
- ${\color{red}\blacktriangleright} \ \, {\bf Poynting flux} : S_z = \frac{1}{4\pi} {\int}_S \left[B_{\rm h}^2 \, V_z ({\pmb B}_{\rm h} \cdot {\pmb V}_{\rm h}) B_z \right] \, dS$
- ▶ Total injectied magnetic energy: $E_{\rm mag} = \int_0^t S_z \ dt'$
 - → injection of magnetic energy into the atmosphere

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025

Results: Overall evolution

Temporal overview

- ▶ Early stage: small fragments of the rising flux tube appear at the surface.
- $ightharpoonup t\sim 20$ hr: the main portion emerges via large upflows.
- ► Emergence forms a yin-yang pattern of postive/negative polarities.
- With periodic boundaries, opposite polarities eventually collide ($t\sim30$ hr), forming δ -spots ($t\sim50$ hr).

Key features: an initial tilt of the untwisted case

a yin-yang pattern alone does not prove the tube was twisted

 \rightarrow strong turbulence can yield similar appearances even if q=0.

Effect of twist strength q/q_{cr}

- ▶ Even an untwisted tube can rise via convection.
- ► Weakly twisted fields diffuse quickly in the surface.
 - → the twist binds magnetic flux against turbulent shredding.
- \blacktriangleright Extremely large twist $(q/q_{cr}=\pm 2)$ also shows a diffuse distribution.
 - \rightarrow Initially B_{tb} is weaker.
 - \rightarrow Total Φ_x is smaller.
 - → Relatively easily influenced by the surrounding turbulence.
- ▶ The sign of helicity injection depends on the twist direction.

Figure 4: $|\mathbf{B}|$ at t=24 hr for the $q/q_{cr}=0$ case.

Figure 5: Temporal evolutions of the total magnetic flux, Φ , and the flux growth rate, $d\Phi/dt$, in the PH.

Effect of twist strength q/q_{cr}

- \blacktriangleright Extremely high twist $(q/q_{cr}=\pm 2)$ yields a lower flux peak.
 - $ightarrow B_{eq} = 6.5 \, \mathrm{kG}$ at $z_{tb} = -22 \, \mathrm{Mm}$
 - $\rightarrow B_{tb} = 7.1$ kG, comparable to B_{eq}
 - → Easily collapsed by the external turbulent flows.

The tendency that an emerging AR with a weaker twist is more scattered, and thus has a smaller amount of magnetic flux within the spots.

Figure 6: Maximum photospheric magnetic flux and the corresponding sunspot area. The straight line is the linear fit to the eight data points except for the untwisted flux tube.

- Numerical models tend to exhibit higher flux growth rates than observed values.
- ▶ X. Sun & A. A. Norton (2017) reported $d\Phi/dt = 4.93 \times 10^{20} \sim 10^{21}$ Mx hr^{-1} for $\Phi = 6.08 \times 10^{22}$ Mx in NOAA AR 12673.

Figure 7: Flux growth rate, $d\Phi/dt$, vs. total magnetic flux, Φ , for various observations and the present nine simulation cases.

Examine how much of the twist in the initial flux tube is successfully transported to the photosphere by flux emergence

$$\alpha_{av}^{0} = \langle J_z/B_z \rangle ,$$

$$\alpha_{av}^{1} = \langle J_z sgn(B_z) \rangle / \langle |B_z| \rangle ,$$

$$\alpha_{av}^{2} = \langle B_z J_z \rangle / \langle B_z^2 \rangle ,$$

Results: magnetic twist α_{av}

Results: magnetic twist α_{av}

- $lackbox{}{max}(lpha_{av})$ tends to decrease from $lpha_{av}^0$ to $lpha_{av}^2$
- lackbox Considering that $lpha_{av}^2$ puts the largest weight to the strong-field regions, this tendency may indicate that the weak field regions have a relatively large amount of magnetic twist.
- ▶ Smaller |q| → conserves the original twist better
- ▶ Higher $|q| \rightarrow \alpha_{av}$ becomes saturated
 - → less successful emergence of strong-twist cases
 - \rightarrow the background turbulence stripped away the twist
 - $\rightarrow\,$ upper BC $\rightarrow\,$ mitigates the magnetic twist that was transported from the subsurface domain.

Results: magnetic helicity

Figure 8: Temporal evolutions of the helicity flux rate, F_z , and the total injected magnetic helicity, ΔH_R . The helicity ΔH_R for the cases $q/q_{cr}=[1/4,0,-1/4,-1/2]$ are also shown in the inset. (Bottom panels)

Results: magnetic helicity

- Peak values decrease as twist strength decreases.
- Even the no-twist case injects finite (positive) helicity.
- ▶ In the $q/q_{cr}=-1/4$ case, helicity briefly swings positive before steadily going negative.
 - → competition between the positive helicity added by the background convection and the counteracting negative magnetic helicity of the original flux tube.

Results: Normalized magnetic helicity

- ▶ In comparing with observations, a normalized helicity measure $(\Delta H_R/\Phi^2)$ is used.
- ▶ Observations show that the typical value of the normalized helicity, $\Delta H_R/\Phi^2$, is of the order of 0.01.
 - \rightarrow super-flaring ARs $\rightarrow \Delta H_R/\Phi^2 < 0.04$
- ightharpoonup For $|q/q_{cr}|=1/2$, values already exceed the observed level (>0.1)
- \blacktriangleright Twist above the kink threshold $(|q/q_{cr}|>1)$ leads to unrealistically large helicity.

Results: Magnetic energy

Figure 9: Temporal evolutions of the Poynting flux in the photosphere, S_z , and the injected magnetic energy, E_{mag} . Their peak values as a function of the initial flux tube twist, q/q_{cr} .

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025

Results: Magnetic energy

- ▶ Cases with $q/q_{cr} = 1$ and 1/2 achieve the highest peaks.
- \blacktriangleright The $q/q_{cr}=-1$ case shows a large peak value of $max(E_{mag})$
 - \rightarrow continued injection of the S_z , although $max(S_z)$ is low.
- $ightharpoonup E_{maq}$ tends to increase with the increase of $|q/q_{cr}|$
 - $\rightarrow max(S_z)$ is larger
 - → emergence continues
- lacktriangledown For $|q/q_{cr}|=\pm 2$, E_{mag} is not remarkable because the flux emergence fails.

Discussion & conclusion: key findings

Magnetic flux emergence:

- → Flux tubes reach the photosphere via convective upflows, regardless of twist.
- → If twist is too weak, flux disperses rapidly in the photosphere.

Magnetic twist:

- → Photospheric measurements largely preserve the initial twist.
- → Within realistic observational ranges.

Magnetic helicity:

- → Even untwisted tubes gain helicity from background turbulence.
- $\,\rightarrow\,$ Twist above the kink threshold produces unrealistic helicity levels.

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025

Discussion & conclusion: theoretical implications

δ-Spot Formation Mechanism:

- \rightarrow Kink instability may not be the primary mechanism for δ -spot formation.
- → Other scenarios: multiple flux tube interactions, multi-buoyancy-segment tubes, etc.

Role of convection:

- → Convection is a non-negligible source of helicity.
- → Confirms the importance of twist in preserving flux tube integrity.

Magnetic energy transport:

- \rightarrow Less than 10% of initial tube energy reaches the upper atmosphere.
- → Most of the magnetic energy remains in the convection zone.

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025

Discussion & conclusion: limitations and future work

Study Limitations:

- → Difficult to confirm kink instability fully.
- → Need to account for different initial tube positions.

▶ Future Directions:

- → Expand the parameter space.
- → Investigate alternative -spot formation mechanisms.

Donghui Son (KHU) Solar Physics Journal Club April 4, 2025

Questions & references

Thank you for listening! Questions?

